The Deepest Image Of The Universe Ever Taken

What is the deepest picture of the universe?

The latest Hubble discoveries are astonishing! Just look at this newly formed giant exoplanet from the constellation Auriga, which is nine times the mass of Jupiter. How about this breathtaking image of a head-on collision between two galaxies known collectively as Arp 143?

They passed through each other, causing a gigantic triangular firestorm with thousands of stars bursting into life. But the telescope could capture much bigger events. Its images changed astronomers’ view of many secrets of the cosmos. Hubble even became a time machine, allowing scientists to see into the past of our universe.

What other astonishing images did the telescope take? And how did a single image taken by Hubble change science once and for all?

How was the eXtreme Deep Field image captured? Hubble is acquiring a new target

Hubble telescope deep space image

To allow us to see deep space, the creators of the Hubble Space Telescope [HST] had to work hard. The need for an orbital observatory was discussed back in the seventies. Scientists wanted to get clearer images of deep space than those taken from Earth. Unfortunately, our atmosphere makes observations difficult by absorbing and distorting light. We’re going to show you some more incredible images, but first… a little quick history of Hubble.

In 1977, the U.S. Congress authorized the construction of a space telescope with the help of NASA. They decided to name it after the outstanding astronomer Edwin Hubble.

The most difficult thing was to make the huge observatory mirror. It was constructed of heat-resistant glass with incredibly thin but durable coatings – a layer of aluminum 65 [nm] nanometers thick protected with a magnesium fluoride layer 25 [nm] nanometers thick.

The entire space telescope turned out to be nearly the size of a school bus. Its primary mirror has a weight of 827 kilograms [1,825 lbs] and has a diameter of 2.4 meters [7.8 ft]. This mirror captures light from a space object and reflects it onto a secondary mirror 0.3 meters [12 inches] in diameter. This smaller mirror was placed in the optical tube.

It reflects light through a hole in the main mirror, forming an image in the telescope. From there it is sent to scientific instruments. At the time of Hubble’s launch, there were six such instruments. These are wide-angle and planetary cameras equipped with a set of 48 light filters to highlight light spectra. The wide-angle one has a large field of view, and the planetary one made it possible to greatly increase the observation points.

Another device, a high-resolution spectrograph, was designed to operate in the ultraviolet range. With its help, the telescope can see dim objects captured by a special camera. The High-Speed Photometer [HSP] can observe variable stars and other objects with varying brightness.

And the Fine Guidance Sensors [FGS] record changes in the position of the object. Scientific instruments were located in the tail section of the HST.

The Hubble Space Telescope is equipped with six gyroscopes, four reaction wheels, two main computers, two wing-like solar arrays, and four antennas. It consumes an average of 2,100 watts of power per day and orbits the Earth every 95 minutes.

Astronomers were thrilled for Hubble to be ready for the launch, but when the Space Shuttle Discovery took off with the telescope, the images were blurry. Spacewalking astronauts fixed the telescope during four servicing missions.

Hubble has been scanning the Universe for over 30 years, and scientists have transformed its images into color.

Hubble Ultra-Deep Field image

In 1995, astronomers used Hubble to study a piece of dark sky over the constellation Ursa Major. They found over 1,500 galaxies at various stages in their evolution, including some that were born during the infancy of our universe.

This is how the Hubble Deep Field was created. But it didn’t end there. In 2004, based on the first version, the Hubble Ultra-Deep Field image was made, containing an estimated 10,000 galaxies. The snapshot contains galaxies of various ages, including the most distant red dim galaxies. Scientists believe they were born during the infancy of our universe when it was just about 800 million years old.

In 2012, astronomers unveiled the Hubble eXtreme Deep Field, which was assembled by combining 10 years of the telescope’s data.

The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. It contains about 5,500 galaxies, including many faint galaxies that are one ten-billionth the brightness of what the human eye can see.

Hubble’s two premier cameras captured 2,000 images of the same field of sky over 50 days to create the Hubble Ultra Deep Field (XDF). The XDF allows scientists to explore further back in time than ever before.

Leave a Reply